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When II or Va was heated above 100°, equilibrium 

between tropone, I, II, and Va was rapidly attained 
before formation of XI was noted, so that no informa­
tion is available as to the origin of XI. However, the 
presence of XVII was never detected by nmr, and the 
direct Cope rearrangement of II to XI is sterically im­
possible, so that the concerted formation of XI is 
implied. 

A second example now exists of competing exo 
[6 + 4] and endo [4 + 2] cycloadditions, lending further 
support to the Woodward-Hoffmann explanation of 
exo-endo phenomena.2,14 
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Photochemical Synthesis of Matrix-Isolated Pleiadene 

Sir: 

Pleiadene1 (I) has long been a subject of theoretical2 

and experimental3 interest but has never been directly 
observed. Cava and Schlessinger3b succeeded in gen­
erating I which could be trapped with N-phenyl-
maleimide but otherwise dimerized immediately to II; 
identical results were obtained for simple derivatives.30 

We wish to report a photochemical preparation and 
spectral characterization of stable matrix-isolated I 
using a novel precursor, 6b,10b-dihydrobenzo[l,2]-
cyclobut[3,4-a]acenaphthylene (III). The unusual path 
followed in the photochemical process is discussed in 
the following communication.4 

Benzyne (anthranilic acid and amyl nitrite in boiling 
CH2Cl2) adds to acenaphthylene; III was isolated in 
8-10% yield by preparative thin-layer chromatography 
on silica gel with petroleum ether eluent: mp 133-
134°, elemental analysis correct for Ci8Hi2, mass spec­
trum shows strong peaks at m/e 228 (M+), 226 (M+ — 
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2H), 114 (M2+), and 113 (M2 + - 2H), and no higher 
peaks up to mje 750. The uv absorption spectrum 
closely resembles a superposition of the spectra of 
benzocyclobutene5 and acenaphthene.6 Proton nmr 
spectra in acetone-rf6 (60, 100, 220 MHz, TMS internal 
standard) show an ABC system integrating for 6 H 
(approximately Ti 2.45, T2 2.53, T3 2.37, Ju = 7 Hz, 
/23 = 8 Hz), an AA'BB' system centered at r 2.84 
(4 H), and a broad singlet at 4.67 (2 H, half-width 1.7 
Hz). Decoupling showed that the broadening is due 
to unresolved long-range coupling between the aliphatic 
protons and both aromatic systems. From measure­
ments of 13C satellites, /H.HI> = 3.5 ± 0.3 Hz, /UCH. = 
147.4 ± 0.5 Hz. These results compare well with 
available data for related molecules7,8" and leave no 
doubt about the structure of III. 

Benzocyclobutenes open thermally and photochem-
ically to o-quinodimethanes.8 By analogy, we expected 
III to give I. Although III is thermally quite stable 
(unchanged after 6 min at 170°), at 230-240° its melt 
solidifies in ca. 5 min and gives II, identified by compari­
son of the decomposition point and nmr and uv spectra 
with Cava's values3b (good agreement except for a 
reported uv peak at 214 nm in dioxane solvent, which 
we believe is spurious). 

Irradiation of the colorless rigid solution of III in 
glass-forming solvents at low temperatures with uv 
light produces a stable yellow-green coloration, which 
we assign to I. The change can be followed spectrally: 
bands of I grow continuously while those of III gradu­
ally disappear (several isosbestic points). The spec­
trum of I is virtually the same in all solvents tested. 
After complete disappearance of III, further irradiation 
with uv, visible, or near-ir light produces no change. 
Thorough attempts to detect an epr signal gave negative 
results (glycerol-methanol, 9:1, 1950K). When a 
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fully converted sample is allowed to warm up until the 
glass starts to melt, the green color disappears in 10-15 
sec (e.g., in 3-methylpentane this occurs at ca. HO0K). 
Recooling at this point and recording the uv spectrum 
give a curve identical with that of II. Using a vacuum-
line degassed solution of III (ca. 10 -4 M), the resulting 
spectrum of II has about 80 % of the intensity expected 
theoretically for 100% conversions in both steps, show­
ing that side reactions are unimportant. In concen­
trated solutions a large degree of conversion is much 
harder to achieve, so that preparative work is difficult. 
However, after repeated irradiation and thawing II was 
isolated by thin-layer chromatography, and identified 
by comparison of its uv spectrum, Rs value (tic), and 
decomposition point with those of the sample prepared 
thermally. 

The rate of the reaction 21 -»• II is striking. It is 
"forbidden" as a thermal concerted process (4 + 4 
cycloaddition).9 However, it is "forbidden much less 
than most others," because of the undoubtedly rela­
tively low energy of the doubly excited 1,1 -*• —1, -1 
configuration in I which correlates with the ground 
state of II. Probably more important, this is an un­
usually favorable case for a nonconcerted mechanism. 
Using heats of formation calculated by Dewar and 
coworkers,10 formation of 1 mol of the intermediate IV 
should be actually exothermic by ca. 5 kcal. 

The absorption spectrum of I has two band systems 
in the visible region: 11,500-20,000 cm-1 (e ^ 1000) 
and 22,000-29,000 cm-1 (e ^ 15,000), both composed 
of progressions in ca. 1200 and ca. 1500 cm - 1 vibrations. 
The uv region contains poorly resolved band systems 
at 30,000-34,000 cm"1 (e ^ 5000), 35,500-38,000 cm"1 

(« *L 30,000), 38,500-40,000 cm-1 (e s 40,000), 41,500-
44,000 (e ^ 30,000), and 46,000 cm-1 (e ^ 40,000). 
These values are in good agreement with results of 
semiempirical SCF-PPP calculations using parameters 
of ref 11. The calculations also account well for the 
differences between the spectrum of I and that re­
ported12 for the closely related acepleiadylene. 

When light of wavelengths above 280 nm is used in 
the photochemical reaction, I is the only product that 
can be detected by absorption spectroscopy. When 
shorter wavelengths are present and the irradiation is 
done at 770K, I still is the main product but presence of 
several additional very small spectral peaks indicates 
formation of a by-product, possibly the radical V.13 
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Work on these and other aspects of the chemistry of 
I and III is being continued. 
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A Photochemical Electrocyclic Reaction Requiring an 
Upper Triplet State 

Sir: 
We wish to present evidence that the photochemical 

conversion11 -»• II does not proceed from excited sin­
glets nor the lowest triplet, but occurs from one (or 
several) of the upper triplet states. This is of interest 
for the understanding of the mechanism of photo­
chemical electrocyclic reactions. 

(a) II is known to dimerize very fast in solution at 
low1 and room2 temperatures. At room temperature, 
irradiation of a vacuum-line degassed solution of I 
(2 X 10-3 M) in 3-methylpentane (3-MP) with 1-kW 
Xe-Hg arc (Corning 9863 filter) gives no dimer of II. 
After 6 hr, over 90 % of I is still present.3 Irradiated 
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no dimer of II can be detected. Similar results are obtained under other 
experimental conditions. The eventual destruction of I proceeds faster 
when very energetic light is not removed (no filter). This lack of elec­
trocyclic reactivity is to be contrasted with the smooth formation of the 
dimer of II in high yield when III is irradiated 1-2 hr with a 100-W Hg 
lamp in liquid solution with or without sensitizer4'6 and with the facile 
photochemical ring opening in IVs and V (can be sensitized).7 
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